Constrained shuffled complex evolution algorithm and its application in the automatic calibration of Xinanjiang model
نویسندگان
چکیده
The Shuffled Complex Evolution—University of Arizona (SCE-UA) is a classical algorithm in the field hydrology and water resources, but it cannot solve constrained optimization problems directly. Using penalty functions has been preferred method to handle constraints, appropriate selection parameters can be challenging. To enhance universality SCE-UA, we propose Constrained Evolution Algorithm (CSCE) conveniently effectively inequality-constrained problems. Its performance compared with SCE-UA using adaptive function (SCEA) on 14 test inequality constraints. It further seven other algorithms two low success rates. demonstrate its effect hydrologic model calibration, CSCE applied parameter Xinanjiang (XAJ) under synthetic data observed data. results indicate that more advantageous than SCEA terms rate, stability, feasible convergence speed. guarantee feasibility solution avoid problem deep soil tension capacity (WDM)<0 process XAJ model. In case data, accurately find theoretical optimal given optimized by simulate hourly rainfall-runoff events Hexi Basin achieves mean Nash efficiency coefficients greater 0.75 calibration period validation period.
منابع مشابه
Automatic Calibration Tool for Hydrologic Simulation Program-FORTRAN Using a Shuffled Complex Evolution Algorithm
Hydrologic Simulation Program-Fortran (HSPF) model calibration is typically done manually due to the lack of an automated calibration tool as well as the difficulty of balancing objective functions to be considered. This paper discusses the development and demonstration of an automated calibration tool for HSPF (HSPF-SCE). HSPF-SCE was developed using the open source software “R”. The tool empl...
متن کاملextraction and characterization of allium irancum plant extract and its application in the green synthesis of silver nano particles and oxidation of thiocarbony1 compounds
سنتز سبز نانوذرات فلزی (nps) درسالهای اخیر توجه بسیارزیادی را به خود جلب کرده است. زیرا این پروتوکل کم هزینه وسازگار با محیط زیست از روش های استاندارد سنتز. در این پایان نامه ما گزارش میکنیم یک روش ساده و سازگار با محیط زیست برای سنتز نانوذرات نقره با استفاده از محلول آبی عصاره گیاه allium iranicum به عنوان یک عامل کاهش دهنده ی طبیعی. نانو ذرات نقره مشخص شد با استفاده از تکنیک های uv-visible، x...
the survey of the virtual higher education in iran and the ways of its development and improvement
این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.
Shuffled Complex Evolution Model Calibrating Algorithm: Enhancing its Robustness and Efficiency
The Shuffled Complex Evolution (SCE-UA) has been used extensively and proved to be a robust and efficient global optimization method for the calibration of conceptual models. In this paper, we propose two enhancements to the SCE-UA algorithm, one to improve its exploration and another to improve its exploitation capability of the search space. A strategically located initial population is used ...
متن کاملOptimum Parameters for Tuned Mass Damper Using Shuffled Complex Evolution (SCE) Algorithm
This study is investigated the optimum parameters for a tuned mass damper (TMD) under the seismic excitation. Shuffled complex evolution (SCE) is a meta-heuristic optimization method which is used to find the optimum damping and tuning frequency ratio for a TMD. The efficiency of the TMD is evaluated by decreasing the structural displacement dynamic magnification factor (DDMF) and acceleration ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Earth Science
سال: 2023
ISSN: ['2296-6463']
DOI: https://doi.org/10.3389/feart.2022.1037173